Logaritma - ARIFUBLOG

download

Meningkatkan Intelektual Anda

About

head-banner

Post Top Ad

Responsive Ads Here

Post Top Ad

Jumat, 25 Januari 2019

Logaritma

Responsive Ads Here



Sifat-Sifat Logaritma
Misalkan a, b, dan g bilangan real positif, dengan g ≠ 1, maka berlaku sifat :
1. clip_image001
Contoh :
clip_image002
clip_image003
clip_image004
2. clip_image005
Contoh :
clip_image006
clip_image007
clip_image008
3. clip_image009
Contoh :
clip_image010
clip_image011
clip_image012
4. clip_image013
Contoh :
clip_image014
clip_image015
Misal kita ambil p = 4
clip_image016
clip_image017
clip_image018
Misal kita ambil p = 2
clip_image019
clip_image020
clip_image018
5. clip_image021
Contoh :
clip_image022
clip_image017
clip_image018
6. clip_image023
Contoh :
clip_image024
clip_image025
clip_image012
7. clip_image026
Contoh :
clip_image027
clip_image028
clip_image012
8. clip_image029
Contoh :
clip_image030
clip_image031
clip_image012

Tidak ada komentar:

Posting Komentar

Post Top Ad