Diawal telah disinggung
bahwa nilai mutlak x adalah jarak dari x ke nol pada garis bilangan real.
Pernyataan inilah yang akan kita gunakan untuk menemukan solusi dari persamaan
dan pertidaksamaan nilai mutlak dari bentuk linier.
| x | = a dengan a > 0
Persamaan | x | = a
artinya jarak dari x ke 0 sama dengan a. Perhatikan gambar berikut.
Jarak -a ke 0 sama dengan jarak a ke 0, yaitu a. Pertanyaannya adalah dimana x agar jaraknya ke 0 juga sama dengan a.
Posisi x ditunjukkan oleh titik merah pada gambar diatas, yaitu x = -a atau x = a. Jelas terlihat bahwa jarak dari titik tersebut ke 0 sama dengan a. Jadi, agar jarak x ke nol sama dengan a, haruslah x = -a atau x = a.
Pertaksamaan | x | <
a, artinya jarak dari x ke 0 kurang dari a. Perhatikan gambar berikut.
Posisi x ditunjukkan oleh ruas garis berwarna merah, yaitu himpunan titik-titik diantara -a dan a yang biasa kita tulis -a < x < a. Jika kita ambil sebarang titik pada interval tersebut, sudah dipastikan jaraknya ke 0 kurang dari a. Jadi, agar jarak x ke 0 kurang dari a, haruslah -a < x < a.
| x | > a untuk a > 0
Pertaksamaan | x | >
a artinya jarak dari x ke 0 lebih dari a. Perhatikan gambar berikut.
Posisi x ditunjukkan oleh ruas garis berwarna merah yaitu x < -a atau x > a. Jika kita ambil sebarang titik pada interval tersebut, sudah dipastikan jaraknya ke 0 lebih dari a. Jadi, agar jarak x ke nol lebih dari a, haruslah x < -a atau x > a.
Secara intuitif, uraian-uraian diatas dapat kita simpulkan sebagai berikut :
SIFAT : Untuk a > 0 berlaku
a. | x | = a ⇔ x = a atau x = -a
b. | x | < a ⇔ -a < x < a
c. | x | > a ⇔ x < -a atau x > a
Contoh 1
Tentukan himpunan penyelesaian dari |2x - 7| = 3
Jawab :
Berdasarkan sifat a :
|2x - 7| = 3 ⇔ 2x - 7 = 3 atau 2x - 7 = -3
|2x - 7| = 3 ⇔ 2x = 10 atau 2x = 4
|2x - 7| = 3 ⇔ x = 5 atau x = 2
Jadi, HP = {2, 5}.
Contoh 2
Tentukan HP dari |2x - 1| = |x + 4|
Jawab :
Berdasarkan sifat a :
|2x - 1| = |x + 4|
⇔ 2x - 1 = x + 4 atau 2x - 1 = -(x + 4)
⇔ x = 5 atau 3x = -3
⇔ x = 5 atau x = -1
Jadi, HP = {-1, 5}.
Contoh 3
Tentukan himpunan penyelesaian dari |2x - 1| < 7
Jawab :
Berdasarkan sifat b :
|2x - 1| < 7 ⇔ -7 < 2x - 1 < 7
|2x - 1| < 7 ⇔ -6 < 2x < 8
|2x - 1| < 7 ⇔ -3 < x < 4
Jadi, HP = {-3 < x < 4}.
Contoh 4
Tentukan himpunan penyelesaian dari |4x + 2| ≥ 6
Jawab :
Berdasarkan sifat c :
|4x + 2| ≥ 6 ⇔ 4x + 2 ≤ -6 atau 4x + 2 ≥ 6
|4x + 2| ≥ 6 ⇔ 4x ≤ -8 atau 4x ≥ 4
|4x + 2| ≥ 6 ⇔ x ≤ -2 atau x ≥ 1
Jadi, HP = {x ≤ -2 atau x ≥ 1}.
Contoh 5
Tentukan penyelesaian dari |3x - 2| ≥ |2x + 7|
Jawab :
Berdasarkan sifat c :
|3x - 2| ≥ |2x + 7|
⇔ 3x - 2 ≤ -(2x + 7) atau 3x - 2 ≥ 2x + 7
⇔ 5x ≤ -5 atau x ≥ 9
⇔ x ≤ -1 atau x ≥ 9
Jadi, HP = {x ≤ -1 atau x ≥ 9}
Contoh 6
Tentukan HP dari 2 < |x - 1| < 4
Jawab :
Ingat : a < x < b ⇔ x > a dan x < b
Jadi, pertaksamaan 2 < |x - 1| < 4 ekuivalen dengan
|x - 1| > 2 dan |x - 1| < 4
Berdasarkan sifat c :
|x - 1| > 2 ⇔ x - 1 < -2 atau x - 1 > 2
|x - 1| > 2 ⇔ x < -1 atau x > 3 ................(1)
Berdasarkan sifat b :
|x - 1| < 4 ⇔ -4 < x - 1 < 4
|x - 1| < 4 ⇔ -3 < x < 5 ............................(2)
Irisan dari (1) dan (2) diperlihatkan oleh garis bilangan berikut
a. | x | = a ⇔ x = a atau x = -a
b. | x | < a ⇔ -a < x < a
c. | x | > a ⇔ x < -a atau x > a
Contoh 1
Tentukan himpunan penyelesaian dari |2x - 7| = 3
Jawab :
Berdasarkan sifat a :
|2x - 7| = 3 ⇔ 2x - 7 = 3 atau 2x - 7 = -3
|2x - 7| = 3 ⇔ 2x = 10 atau 2x = 4
|2x - 7| = 3 ⇔ x = 5 atau x = 2
Jadi, HP = {2, 5}.
Contoh 2
Tentukan HP dari |2x - 1| = |x + 4|
Jawab :
Berdasarkan sifat a :
|2x - 1| = |x + 4|
⇔ 2x - 1 = x + 4 atau 2x - 1 = -(x + 4)
⇔ x = 5 atau 3x = -3
⇔ x = 5 atau x = -1
Jadi, HP = {-1, 5}.
Contoh 3
Tentukan himpunan penyelesaian dari |2x - 1| < 7
Jawab :
Berdasarkan sifat b :
|2x - 1| < 7 ⇔ -7 < 2x - 1 < 7
|2x - 1| < 7 ⇔ -6 < 2x < 8
|2x - 1| < 7 ⇔ -3 < x < 4
Jadi, HP = {-3 < x < 4}.
Contoh 4
Tentukan himpunan penyelesaian dari |4x + 2| ≥ 6
Jawab :
Berdasarkan sifat c :
|4x + 2| ≥ 6 ⇔ 4x + 2 ≤ -6 atau 4x + 2 ≥ 6
|4x + 2| ≥ 6 ⇔ 4x ≤ -8 atau 4x ≥ 4
|4x + 2| ≥ 6 ⇔ x ≤ -2 atau x ≥ 1
Jadi, HP = {x ≤ -2 atau x ≥ 1}.
Contoh 5
Tentukan penyelesaian dari |3x - 2| ≥ |2x + 7|
Jawab :
Berdasarkan sifat c :
|3x - 2| ≥ |2x + 7|
⇔ 3x - 2 ≤ -(2x + 7) atau 3x - 2 ≥ 2x + 7
⇔ 5x ≤ -5 atau x ≥ 9
⇔ x ≤ -1 atau x ≥ 9
Jadi, HP = {x ≤ -1 atau x ≥ 9}
Contoh 6
Tentukan HP dari 2 < |x - 1| < 4
Jawab :
Ingat : a < x < b ⇔ x > a dan x < b
Jadi, pertaksamaan 2 < |x - 1| < 4 ekuivalen dengan
|x - 1| > 2 dan |x - 1| < 4
Berdasarkan sifat c :
|x - 1| > 2 ⇔ x - 1 < -2 atau x - 1 > 2
|x - 1| > 2 ⇔ x < -1 atau x > 3 ................(1)
Berdasarkan sifat b :
|x - 1| < 4 ⇔ -4 < x - 1 < 4
|x - 1| < 4 ⇔ -3 < x < 5 ............................(2)
Irisan dari (1) dan (2) diperlihatkan oleh garis bilangan berikut
Jadi, HP = {-3 < x < -1 atau 3 < x < 5}
Tidak ada komentar:
Posting Komentar