Vektor di R^3
Vektor yang berada pada ruang tiga dimensi (x, y, z).jarak antara dua titik vektor dalam
dapat diketahui dengan pengembangan rumus phytagoras. Jika titik
dan titik
maka jarak AB adalah:
Atau jika
, maka
Vektor
dapat dinyatakan dalam dua bentuk, yaitu dalam kolom
atau dalam baris
. Vektor juga dapat disajikan sebagai kombinasi linier dari vektor basis
dan
dan
berikut:

Operasi Vektor di R^3
Operasi vektor di
secara umum, memiliki konsep yang sama dengan operasi vektor di
dalam penjumlahan, pengurangan, maupun perkalian.
Penjumlahan dan pengurangan vektor di R^3
Penjumlahan dan pengurangan vektor di
sama dengan vektor di
yaitu:
Dan
Perkalian vektor di R^3 dengan skalar
Jika
adalah vektor dan k adalah skalar. Maka perkalian vektor:
Hasil kali skalar dua vektor
Selain rumus di
, ada rumus lain dalam hasil kali skalar dua vektor. Jika
dan
maka
adalah:
Proyeksi Orthogonal vektor
Jika vektor
diproyeksikan ke vektor
dan diberi nama
seperti gambar dibawah:

Diketahui:
Sehingga:
Untuk mendapat vektornya:
Contoh Soal Vektor dan Pembahasan
Contoh Soal 1
Diketahui titik A(2,4,6), titik B(6,6,2), dan titik C(p,q,-6). Jika titik A, B, dan C segaris maka tentukan nilai p+q.
Pembahasan 1:
Jika titik-titik A, B, dan C segaris maka vektor
dan vektor
bisa searah atau berlainan arah. Sehingga akan ada bilangan m yang merupakan sebuah kelipatan dan membentuk persamaan
Jika B berada diantara titik A dan C, diperoleh:
sehingga:
Maka kelipatan m dalam persamaan:
Diperoleh:
disimpulkan:
p+q=10+14=24
Contoh Soal 2
Jika diketahui vektor pada titik A dan titik B dan vektor pada titik C yang berada diantara garis Ab seperti gambar dibawah. Tentukan persamaan vektor C.

Pembahasan 2:
Dari gambar dapat diketahui bahwa:
sehingga
Sehingga:
Contoh Soal 3
Misalkan vektor
dan vektor
. Jika panjang proyeksi vektor a ̅
pada
adalah 4. Maka tentukan nilai y.
Pembahasan 3:
Diketahui:
Maka:
12=8+2y
y=2
Tidak ada komentar:
Posting Komentar